MAPK ERK signaling regulates the TGF-beta1-dependent mosquito response to Plasmodium falciparum

PLoS Pathog. 2009 Apr;5(4):e1000366. doi: 10.1371/journal.ppat.1000366. Epub 2009 Apr 3.

Abstract

Malaria is caused by infection with intraerythrocytic protozoa of the genus Plasmodium that are transmitted by Anopheles mosquitoes. Although a variety of anti-parasite effector genes have been identified in anopheline mosquitoes, little is known about the signaling pathways that regulate these responses during parasite development. Here we demonstrate that the MEK-ERK signaling pathway in Anopheles is controlled by ingested human TGF-beta1 and finely tunes mosquito innate immunity to parasite infection. Specifically, MEK-ERK signaling was dose-dependently induced in response to TGF-beta1 in immortalized cells in vitro and in the A. stephensi midgut epithelium in vivo. At the highest treatment dose of TGF-beta1, inhibition of ERK phosphorylation increased TGF-beta1-induced expression of the anti-parasite effector gene nitric oxide synthase (NOS), suggesting that increasing levels of ERK activation negatively feed back on induced NOS expression. At infection levels similar to those found in nature, inhibition of ERK activation reduced P. falciparum oocyst loads and infection prevalence in A. stephensi and enhanced TGF-beta1-mediated control of P. falciparum development. Taken together, our data demonstrate that malaria parasite development in the mosquito is regulated by a conserved MAPK signaling pathway that mediates the effects of an ingested cytokine.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analysis of Variance
  • Animals
  • Anopheles / immunology*
  • Anopheles / metabolism*
  • Cells, Cultured
  • Chi-Square Distribution
  • Extracellular Signal-Regulated MAP Kinases / metabolism*
  • Gene Expression Regulation
  • Immunity, Innate
  • Insect Proteins / metabolism*
  • MAP Kinase Signaling System*
  • Nitric Oxide Synthase Type II / metabolism
  • Plasmodium falciparum / growth & development
  • Plasmodium falciparum / immunology*
  • Signal Transduction
  • Statistics, Nonparametric
  • Transforming Growth Factor beta1 / metabolism*

Substances

  • Insect Proteins
  • Transforming Growth Factor beta1
  • Nitric Oxide Synthase Type II
  • Extracellular Signal-Regulated MAP Kinases