Rapid concentration of Bacillus and Clostridium spores from large volumes of milk, using continuous flow centrifugation

J Food Prot. 2009 Mar;72(3):666-8. doi: 10.4315/0362-028x-72.3.666.

Abstract

Deliberate or accidental contamination of foods such as milk, soft drinks, and drinking water with infectious agents or toxins is a major concern to health authorities. There is a critical need to develop technologies that can rapidly and efficiently separate and concentrate biothreat agents from food matrices. A key limitation of current centrifugation and filtration technologies is that they are batch processes with extensive hands-on involvement and processing times. The objective of our studies was to evaluate the continuous flow centrifugation (CFC) technique for the rapid separation and concentration of bacterial spores from large volumes of milk. We determined the effectiveness of the CFC technology for concentrating approximately 10(3) bacterial spores in 3.7 liters (1 gal) of whole milk and skim milk, using Bacillus subtilis, Bacillus atrophaeus, and Clostridium sporogenes spores as surrogates for biothreat agents. The spores in the concentrated samples were enumerated by using standard plating techniques. Three independent experiments were performed at 10,000 rpm and 0.7 liters/min flow rate. The mean B. subtilis spore recoveries were 71.3 and 56.5% in skim and whole milk, respectively, and those for B. atrophaeus were 55 and 59.3% in skim and whole milk, respectively. In contrast, mean C. sporogenes spore recoveries were 88.2 and 78.6% in skim and whole milk, respectively. The successful use of CFC to concentrate these bacterial spores from 3.7 liters of milk in 10 min shows promise for rapidly concentrating other spores from large volumes of milk.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bacillus / isolation & purification*
  • Centrifugation / methods*
  • Clostridium / isolation & purification*
  • Colony Count, Microbial
  • Consumer Product Safety
  • Flow Injection Analysis
  • Food Contamination / analysis*
  • Humans
  • Milk / microbiology*
  • Spores, Bacterial / isolation & purification*