Large scale cell biological experiments are beginning to be applied as a systems-level approach to decipher mechanisms that govern cellular function in health and disease. The use of automated microscopes combined with digital imaging, machine learning and other analytical tools has enabled high-content screening (HCS) in a variety of experimental systems. Successful HCS screens demand careful attention to assay development, data acquisition methods and available genomic tools. In this minireview, we highlight developments in this field pertaining to yeast cell biology and discuss how we have combined HCS with methods for automated yeast genetics (synthetic genetic array (SGA) analysis) to enable systematic analysis of cell biological phenotypes in a variety of genetic backgrounds.