Background: The Dnd DNA degradation phenotype was first observed during electrophoresis of genomic DNA from Streptomyces lividans more than 20 years ago. It was subsequently shown to be governed by the five-gene dnd cluster. Similar gene clusters have now been found to be widespread among many other distantly related bacteria. Recently the dnd cluster was shown to mediate the incorporation of sulphur into the DNA backbone via a sequence-selective, stereo-specific phosphorothioate modification in Escherichia coli B7A. Intriguingly, to date all identified dnd clusters lie within mobile genetic elements, the vast majority in laterally transferred genomic islands.
Methodology: We organized available data from experimental and bioinformatics analyses about the DNA phosphorothioation phenomenon and associated documentation as a dndDB database. It contains the following detailed information: (i) Dnd phenotype; (ii) dnd gene clusters; (iii) genomic islands harbouring dnd genes; (iv) Dnd proteins and conserved domains. As of 25 December 2008, dndDB contained data corresponding to 24 bacterial species exhibiting the Dnd phenotype reported in the scientific literature. In addition, via in silico analysis, dndDB identified 26 syntenic dnd clusters from 25 species of Eubacteria and Archaea, 25 dnd-bearing genomic islands and one dnd plasmid containing 114 dnd genes. A further 397 other genes coding for proteins with varying levels of similarity to Dnd proteins were also included in dndDB. A broad range of similarity search, sequence alignment and phylogenetic tools are readily accessible to allow for to individualized directions of research focused on dnd genes.
Conclusion: dndDB can facilitate efficient investigation of a wide range of aspects relating to dnd DNA modification and other island-encoded functions in host organisms. dndDB version 1.0 is freely available at http://mml.sjtu.edu.cn/dndDB/.