Nonequilibrium steady state transport via the reduced density matrix operator

J Chem Phys. 2009 Apr 14;130(14):144105. doi: 10.1063/1.3109898.

Abstract

We present a very simple model for numerically describing the steady state dynamics of a system interacting with continua of states representing a bath. Our model can be applied to equilibrium and nonequilibrium problems. For a one-state system coupled to two free electron reservoirs, our results match the Landauer formula for current traveling through a molecule. More significantly, we can also predict the nonequilibrium steady state population on a molecule between two out-of-equilibrium contacts. While the method presented here is for one-electron Hamiltonians, we outline how this model may be extended to include electron-electron interactions and correlations, an approach which suggests a connection between the conduction problem and the electronic structure problem.