In forensic pathology and anthropology, a correct analysis of lesions on soft tissues and bones is of the utmost importance, in order to verify the cause and manner of death. Photographs, videos, and photogrammetry may be an optimal manner of immortalizing a lesion, both on cadavers and skeletal remains; however, none of these can supply a detailed three-dimensional (3D) modeling of the lesion. Up to now, only the use of casts has given us the possibility of studying deep lesions such as saw marks with an accurate and complete 3D reconstruction of bone structure. The present study aims at verifying the applicability of 3D optical contactless measurement for the accurate recording of soft tissue and bone lesions, in order to develop a unique and precise method of registering and analyzing lesions, both in forensic pathology and anthropology. Three cases were analyzed: the first, a car accident with blunt force skin injuries; the second, a murder with blunt force injury to the head applied with a metal rod; the third, a series of sharp force knife and saw lesions on bone. Results confirm that 3D optical digitizing technology is a crucial tool in the immortalization of wound morphology in the medico-legal context even on "difficult" substrates such as cut marks and saw marks on bone.