To investigate a presumed crosstalk between estrogen receptor alpha (ERalpha) and the TGF-beta signaling pathway in breast cancer, we analyzed the TGF-beta-induced expression of the plasminogen activator inhibitor 1 (PAI-1) gene in ER-positive MCF-7 cells. After siRNA-mediated knock-down of endogenous ERalpha, the transcription level of PAI-1 was upregulated, pointing to an attenuation of TGF-beta signaling by the presence of ERalpha. We verified these findings by a vice versa approach using a primary ER-negative cell model transiently overexpressing either ERalpha or ERbeta. We found that ERalpha, but not ERbeta, led to a strong inhibition of the TGF-beta1 signal, monitored by TGF-beta reporter assays. This attenuation was completely independent of receptor stimulation by beta-estradiol (E2) or inhibition by the pure antagonist ICI 182.780 (ICI). Our results indicate a permanent repression of PAI-1 by ERalpha and suggest a ligand-independent crosstalk between ERalpha and TGF-beta signaling in breast cancer cells.