Insertional inactivation of the Streptococcus mutans spaP gene was used to construct an isogenic mutant (834) of strain NG8 (serotype c) which lacked the major cell surface-associated protein referred to as P1 (15). Results of several studies suggest that P1 is involved in the adherence of S. mutans to saliva-coated apatite surfaces. With an in vitro model system of hydroxyapatite (HA) beads coated with parotid saliva (PS) and additional HA surfaces coated with PS and in situ-formed glucan, it was observed that mutant 834 adhered poorly to the PS/HA surfaces. In contrast, both parent and mutant strains bound to the PS-glucan/HA surface. Groups of intact and desalivated rats were infected with each strain to determine relative capacities to induce dental caries. Rats were fed a highly cariogenic diet containing 56% sucrose for 3 to 5 weeks. Each strain colonized the rodent model and caused similar levels of smooth-surface caries under these dietary conditions. It was concluded that P1 influences the ability of organisms to adhere to saliva-coated surfaces and possibly affects primary colonization of the oral cavity in the absence of a glucan surface but has no effect on glucan-mediated adherence in vitro or in vivo.