Bid, a proapoptotic member of Bcl-2 family, is involved in Fas receptor signaling. Fas activation promotes human eosinophil cell death and is believed to accelerate the resolution of pulmonary Th2-driven allergic reaction in mice. We hypothesized that Bid would regulate eosinophil apoptosis and Ag-induced airway inflammation, particularly eosinophilia. C57BL/6 Bid(-/-) and wild-type mice were immunized and repeatedly challenged with OVA, and bronchoalveolar lavage (BAL) fluid, lung, and spleen were collected 4-240 h after the final challenge. Cultured BAL eosinophils from Bid-deficient mice showed resistance to Fas-mediated apoptotic DNA fragmentation, phosphatidylserine exposure, mitochondria depolarization, and caspase-3 activity. In addition, OVA-challenged Bid(-/-) mice had higher BAL eosinophilia and a lower proportion of BAL apoptotic eosinophils than Bid(+/+) mice. This was accompanied by augmented BAL levels of the eosinophilotactic cytokine, IL-5, and of the eosinophil-associated mediators, TGF-beta1 and fibronectin. Finally, cultured OVA-stimulated lung mononuclear cells and splenocytes from Bid-deficient mice showed increased release of the Th2-type cytokines, IL-4 and IL-5, but no change in cell number. We conclude that Bid modulates BAL eosinophilia by regulating both eosinophil apoptosis and Th2-type cytokine production.