Diabetes mellitus, with its complications, and Alzheimer's disease (AD) share many similarities. Both are age-related and associated with enhanced formation of advanced glycation endproducts (AGEs) and oxidative stress, factors that can be observed during the normal aging process as well. AGE deposits can be found in areas of atherosclerotic lesions in diabetes and in senile plaques and neurofibrillary tangles in AD. A classical model organism in aging research is the nematode Caenorhabditis elegans (C. elegans). Though C. elegans lacks a vascular system, it has been introduced in diabetes and AD research since it shares many similarities at the molecular level to pathological processes found in humans. AGEs accumulate in C. elegans, and increased AGE-formation and mitochondrial AGE-modification are responsible for increased oxidative stress and limiting life span. Moreover, C. elegans has an accessible and well characterized nervous system and features several genes homologous to human genes implicated in AD like amyloid-beta protein precursor, presenilins and tau. In addition, human genes linked to AD, such as amyloid-beta or tau, can be expressed and studied in C. elegans. So far, C. elegans research has contributed to a better understanding of the function of AD-related genes and the development of this disease.