The nucleotide sequence of the gene for the spermidine and putrescine transport system that maps at 15 min on the Escherichia coli chromosome was determined. It contained four open reading frames encoding A, B, C, and D proteins. By making several subclones, we showed that expression of all the four proteins was necessary for maximal spermidine and putrescine transport activity. A single transport system was involved in the transport of both spermidine and putrescine. The A protein (Mr 43K) was found to be associated with membranes, as shown by Western blot analysis of the cell fractions. In addition, it had consensus amino acid sequences for the nucleotide binding site. B (Mr 31K) and C (Mr 29K) proteins consisted of six putative transmembrane spanning segments linked by hydrophilic segments of variable length as shown by cell localization of the proteins synthesized in maxicells and by hydropathy profiles. D protein (Mr 39K) was inferred to be a polyamine binding protein existing in a periplasmic fraction from the results of Western blot analysis of the cell fractions and from measurements of polyamine binding to the protein. These results indicate that the spermidine and putrescine transport system can be defined as a bacterial periplasmic transport system.