Theory of spin exciton in the Kondo semiconductor YbB12

Phys Rev Lett. 2009 Mar 13;102(10):106402. doi: 10.1103/PhysRevLett.102.106402. Epub 2009 Mar 10.

Abstract

The Kondo semiconductor YbB12 exhibits a spin and charge gap of approximately 15 meV. Close to the gap energy narrow dispersive collective excitations were identified by previous inelastic neutron scattering experiments. We present a theoretical analysis of these excitations. Starting from a periodic Anderson model for crystalline-electric-field- (CEF) split 4f states we derive the hybridized quasiparticle bands in slave boson mean-field approximation and calculate the momentum dependent dynamical susceptibility in random phase approximation. We show that a small difference in the hybridization of the two CEF (quasi-) quartets leads to the appearance of two dispersive spin resonance excitations at the continuum threshold. Our theoretical analysis explains the most salient features of previously unexplained experiments on the magnetic excitations of YbB12.