We investigate the propagation of femtosecond pulses in a nonlinear, dispersive medium at powers several times greater than the critical power for self focusing. The combined effects of diffraction, normal dispersion and cubic nonlinearity lead to pulse splitting. We show that detailed theoretical description of the linear propagation of the pulse from the exit face of the nonlinear medium (near field) to the measuring device (far field) is crucial for quantitative interpretation of experimental data.