Pseudomonas aeruginosa is a ubiquitous gram-negative bacterium, which is also able to cause severe opportunistic infections in humans. The colonization of the host is importantly affected by the production of the high-affinity iron (III) scavenging peptidic siderophore pyoverdine. The species P. aeruginosa can be divided into three subgroups ('siderovars'), each characterized by the production of a specific pyoverdine and receptor (FpvA). We used a multiplex PCR to determine the FpvA siderovar on 345 P. aeruginosa strains from environmental or clinical origin. We found about the same proportion of each type in clinical strains, while FpvA type I was slightly over-represented (49%) in environmental strains. Our multiplex PCR also detected the presence or absence of an additional receptor for type I pyoverdine (FpvB). The fpvB gene was in fact present in the vast majority of P. aeruginosa strains (93%), regardless of their siderovar or their origin. Finally, molecular analyses of fpvA and fpvB genes highlighted a complex evolutionary history, probably linked to the central role of iron acquisition in the ecology and virulence of P. aeruginosa.