Succinoglycan monomers (M1, M2, and M3) are octasaccharides with acetyl, pyruvyl, and/or succinyl groups as substituents derived from Sinorhizobium meliloti 1021. The dissociation patterns of the octasaccharides caused by low-energy collision-activated dissociation (CAD) were investigated using triple quadrupole tandem mass spectrometry (MS) equipped with an electrospray ionization (ESI) source with increasing collision energy (CE) in negative ion mode. None of the succinoglycan monomers were fragmented at a CE of -25eV. When the CE was applied to -50 or -70eV, the loss of the terminal Gal residue and/or the succinyl group of the monomers was observed in the product ion scan mode. Interestingly, the acetyl and the pyruvyl groups in the succinoglycan monomers were not lost even when a CE of -70eV was applied, indicating that the substituents are more stable than the succinyl group in the octasaccharides.