Contrast-transfer calculations indicate that C(c) correction should be highly beneficial for high-resolution and energy-filtered transmission electron microscopy. A prototype of an electron optical system capable of correcting spherical and chromatic aberration has been used to verify these calculations. A strong improvement in resolution at an acceleration voltage of 80 kV has been measured. Our first C(c)-corrected energy-filtered experiments examining a (LaAlO(3))(0.3)(Sr(2)AlTaO(6))(0.7)/LaCoO(3) interface demonstrated a significant gain for the spatial resolution in elemental maps of La.