Objective: Outcome prediction is challenging in comatose postcardiac arrest survivors. We assessed the feasibility and prognostic utility of brain diffusion-weighted magnetic resonance imaging (DWI) during the first week.
Methods: Consecutive comatose postcardiac arrest patients were prospectively enrolled. AWI data of patients who met predefined specific prognostic criteria were used to determine distinguishing apparent diffusion coefficient (ADC) thresholds. Group 1 criteria were death at 6 months and absent motor response or absent pupillary reflexes or bilateral absent cortical responses at 72 hours or vegetative at 1 month. Group 2 criterion was survival at 6 months with a Glasgow Outcome Scale score of 4 or 5 (group 2A) or 3 (group 2B). The percentage of voxels below different ADC thresholds was calculated at 50 x 10(-6) mm(2)/sec intervals.
Results: Overall, 86% of patients underwent DWI. Fifty-one patients with 62 brain DWIs were included. Forty patients met the specific prognostic criteria. The percentage of brain volume with an ADC value less than 650 to 700 x 10(-6)mm(2)/sec best differentiated between Group 1 and Groups 2A and 2B combined (p < 0.001), whereas the 400 to 450 x 10(-6)mm(2)/sec threshold best differentiated between Groups 2A and 2B (p = 0.003). The ideal time window for prognostication using DWI was between 49 and 108 hours after the arrest. When comparing DWI in this time window with the 72-hour neurological examination, DWI improved the sensitivity for predicting poor outcome by 38% while maintaining 100% specificity (p = 0.021).
Interpretation: Quantitative DWI in comatose postcardiac arrest survivors holds promise as a prognostic adjunct.