Neuroimaging studies suggest that a fronto-parietal network is activated when we expect visual information to appear at a specific spatial location. Here we examined whether a similar network is involved for auditory stimuli. We used sparse fMRI to infer brain activation while participants performed analogous visual and auditory tasks. On some trials, participants were asked to discriminate the elevation of a peripheral target. On other trials, participants made a nonspatial judgment. We contrasted trials where the participants expected a peripheral spatial target to those where they were cued to expect a central target. Crucially, our statistical analyses were based on trials where stimuli were anticipated but not presented, allowing us to directly infer perceptual orienting independent of perceptual processing. This is the first neuroimaging study to use an orthogonal-cuing paradigm (with cues predicting azimuth and responses involving elevation discrimination). This aspect of our paradigm is important, as behavioral cueing effects in audition are classically only observed when participants are asked to make spatial judgments. We observed similar fronto-parietal activation for both vision and audition. In a second experiment that controlled for stimulus properties and task difficulty, participants made spatial and temporal discriminations about musical instruments. We found that the pattern of brain activation for spatial selection of auditory stimuli was remarkably similar to what we found in our first experiment. Collectively, these results suggest that the neural mechanisms supporting spatial attention are largely similar across both visual and auditory modalities.