Tumour-associated tenascin-C isoforms promote breast cancer cell invasion and growth by matrix metalloproteinase-dependent and independent mechanisms

Breast Cancer Res. 2009;11(2):R24. doi: 10.1186/bcr2251. Epub 2009 Apr 30.

Abstract

Introduction: The stromal microenvironment has a profound influence on tumour cell behaviour. In tumours, the extracellular matrix (ECM) composition differs from normal tissue and allows novel interactions to influence tumour cell function. The ECM protein tenascin-C (TNC) is frequently up-regulated in breast cancer and we have previously identified two novel isoforms - one containing exon 16 (TNC-16) and one containing exons 14 plus 16 (TNC-14/16).

Methods: The present study has analysed the functional significance of this altered TNC isoform profile in breast cancer. TNC-16 and TNC-14/16 splice variants were generated using PCR-ligation and over-expressed in breast cancer cells (MCF-7, T47D, MDA-MD-231, MDA-MB-468, GI101) and human fibroblasts. The effects of these variants on tumour cell invasion and proliferation were measured and compared with the effects of the large (TNC-L) and fully spliced small (TNC-S) isoforms.

Results: TNC-16 and TNC-14/16 significantly enhanced tumour cell proliferation (P < 0.05) and invasion, both directly (P < 0.01) and as a response to transfected fibroblast expression (P < 0.05) with this effect being dependent on tumour cell interaction with TNC, because TNC-blocking antibodies abrogated these responses. An analysis of 19 matrix metalloproteinases (MMPs) and tissue inhibitor of matrix metalloproteinases 1 to 4 (TIMP 1 to 4) revealed that TNC up-regulated expression of MMP-13 and TIMP-3 two to four fold relative to vector, and invasion was reduced in the presence of MMP inhibitor GM6001. However, this effect was not isoform-specific but was elicited equally by all TNC isoforms.

Conclusions: These results demonstrate a dual requirement for TNC and MMP in enhancing breast cancer cell invasion, and identify a significant role for the tumour-associated TNC-16 and TNC-14/16 in promoting tumour invasion, although these isoform-specific effects appear to be mediated through MMP-independent mechanisms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alternative Splicing
  • Blotting, Western
  • Breast Neoplasms / enzymology*
  • Breast Neoplasms / genetics
  • Breast Neoplasms / pathology*
  • Cell Adhesion
  • Cell Movement
  • Cell Proliferation
  • Female
  • Humans
  • Matrix Metalloproteinases / genetics
  • Matrix Metalloproteinases / metabolism*
  • Neoplasm Invasiveness
  • Protein Isoforms
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Reverse Transcriptase Polymerase Chain Reaction
  • Tenascin / physiology*
  • Tissue Inhibitor of Metalloproteinase-1 / genetics
  • Tissue Inhibitor of Metalloproteinase-1 / metabolism
  • Tissue Inhibitor of Metalloproteinase-2 / genetics
  • Tissue Inhibitor of Metalloproteinase-2 / metabolism
  • Tissue Inhibitor of Metalloproteinase-3 / genetics
  • Tissue Inhibitor of Metalloproteinase-3 / metabolism
  • Tissue Inhibitor of Metalloproteinase-4
  • Tissue Inhibitor of Metalloproteinases / genetics
  • Tissue Inhibitor of Metalloproteinases / metabolism
  • Up-Regulation

Substances

  • Protein Isoforms
  • RNA, Messenger
  • TIMP3 protein, human
  • Tenascin
  • Tissue Inhibitor of Metalloproteinase-1
  • Tissue Inhibitor of Metalloproteinase-3
  • Tissue Inhibitor of Metalloproteinases
  • Tissue Inhibitor of Metalloproteinase-2
  • Matrix Metalloproteinases