Accumulating evidence indicates that the metabotropic glutamate receptor mGluR5 is involved in the peripheral mechanisms of inflammatory nociception. To investigate whether mGluR5 may mediate the inflammatory pain and thermal hyperalgesia in the dental pulp, we examined the expression of mGluR5 and transient receptor potential vanilloid 1 (TRPV1) in human dental pulp by immunohistochemistry and electron microscopy; mGluR5-immunopositive (+) axons were observed in nerve bundles and branched extensively within the peripheral coronal pulp. Most of the mGluR5+ axons were unmyelinated. A large fraction of these axons (36.5%) were immunostained for TRPV1. Immunoreactivity for mGluR5 and TRPV1 was also observed in odontoblasts. These results support the possibility that the nerve fibers in the dental pulp mediate inflammatory pain and thermal hyperalgesia through coactivation of mGluR5 and TRPV1 and also suggest a possible role for odontoblasts in the transduction of nociceptive signals via mGluR5-mediated mechanism.