IL-31 is a recently identified cytokine made predominantly by CD4(+) Th2 cells and its receptor, IL-31R, is expressed by a number of cell types including monocytes, epithelial cells, and T cells. Originally identified as a potential mediator of inflammation in the skin, we recently reported a novel function for endogenous IL-31R interactions in limiting type 2 inflammation in the lung. However, whether IL-31-IL-31R interactions regulate immunity or inflammation at other mucosal sites, such as the gut, is unknown. In this study, we report a regulatory role for IL-31-IL-31R interactions in the intestine following infection with the gastrointestinal helminth Trichuris muris, immunity to which is critically dependent on CD4(+) Th2 cells that produce IL-4 and IL-13. IL-31Ralpha was constitutively expressed in the colon and exposure to Trichuris induced the expression of IL-31 in CD4(+) T cells. In response to Trichuris infection, IL-31Ralpha(-/-) mice exhibited increased Th2 cytokine responses in the mesenteric lymph nodes and elevated serum IgE and IgG1 levels compared with wild type mice. IL-31Ralpha(-/-) mice also displayed enhanced goblet cell hyperplasia and a marked increase in secretion of goblet cell-derived resistin-like molecule beta into the intestinal lumen. Consistent with their exacerbated type 2 inflammatory responses, IL-31Ralpha(-/-) mice exhibited accelerated expulsion of Trichuris with significantly decreased worm burdens compared with their wild type counterparts early following infection. Collectively, these data provide the first evidence of a function for IL-31-IL-31R interactions in limiting the magnitude of type 2 inflammatory responses within the intestine.