Background and purpose: alpha5IA (3-(5-methylisoxazol-3-yl)-6-[(1-methyl-1,2,3-triazol-4-yl)methyloxy]-1,2,4-triazolo[3,4-a]phthalazine) is a triazolophthalazine with subnanomolar affinity for alpha1-, alpha2-, alpha3- and alpha5-containing GABA(A) receptors. Here we have evaluated the relationship between plasma alpha5IA concentrations and benzodiazepine binding site occupancy in rodents and primates (rhesus monkey).
Experimental approach: In awake rats, occupancy was measured at various times after oral dosing with alpha5IA (0.03-30 mgxkg(-1)) using an in vivo {[(3)H]flumazenil (8-fluoro 5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylic acid ethyl ester)} binding assay. In anaesthetized rhesus monkeys, occupancy was measured using {[(123)I]iomazenil (ethyl 5,6-dihydro-7-iodo-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylic acid ethyl ester)} gamma-scintigraphy and a bolus/infusion paradigm. In both rat and rhesus monkey, the plasma drug concentration corresponding to 50% occupancy (EC(50)) was calculated.
Key results: In rats, alpha5IA occupancy was dose- and time-dependent with maximum occupancy occurring within the first 2 h. However, rat plasma EC(50) was time-independent, ranging from 42 to 67 ngxmL(-1) over a 24 h time course with the average being 52 ngxmL(-1) (i.e. occupancy decreased as plasma drug concentrations fell). In rhesus monkeys, the EC(50) for alpha5IA displacing steady-state [(123)I]iomazenil binding was 57 ngxmL(-1).
Conclusions and implications: Rat plasma EC(50) values did not vary as a function of time indicating that alpha5IA dissociates readily for the GABA(A) receptor in vivo. These data also suggest that despite the different assays used (terminal assays of [(3)H]flumazenil in vivo binding in rats and [(123)I]iomazenil gamma-scintigraphy in anaesthetized rhesus monkeys), these techniques produced similar plasma alpha5IA EC(50) values (52 and 57 ngxmL(-1) respectively) and that the plasma-occupancy relationship for alpha5IA translates across these two species.