We consider the propagation of guided waves in a planar waveguide that has smooth walls except for a finite length segment that has random roughness. Maxwell's equations are solved in the frequency domain for both TE and TM polarization in 2-D by using modal expansion methods. Obtaining numerical solutions is facilitated by using perfectly matched boundary layers and the {\bf R}-matrix propagator. Varying lengths of roughness segments are considered and numerical results are obtained for guided wave propagation losses due to roughness induced scattering. The roughness on each waveguide boundary is numerically generated from an assumed Gaussian power spectrum. The guided waves are excited by a Gaussian beam incident on the waveguide aperture. Considerable numerical effort is given to determine the stability of the algorithm.