Microemulsions of N-alkylimidazolium ionic liquid and their performance as microreactors for the photocycloaddition of 9-substituted anthracenes

Langmuir. 2009 May 19;25(10):5484-90. doi: 10.1021/la803336g.

Abstract

The phase behavior of the ternary system consisting of an ionic liquid (1-tetradecyl-3-methylimidazolium bromide [C14mim]Br), p-xylene, and water were investigated. Depending on the composition of the ternary system, formation of hexagonal and lamellar liquid crystals as well as microemulsions was observed. 1H NMR spectroscopy study, 2D ROESY spectroscopic analysis, and rheological measurements of the microemulsions indicated that p-xylene is preferably located in the hydrophobic core and the palisade shells of the microemulsions. The sizes of the microemulsion droplets for the samples with water/[C14mim]Br ratio of 78:22 are measured by both dynamic light scattering (DLS) and transmission electron microscopy with the freeze-fracture technique (FF-TEM). Upon change of the mole ratio of the solubilized xylene to [C14mim]Br from 0 to 2.4, the diameters of the microemulsion droplets increase from ca. 20 to 90 nm and size distribution gets broad. These microemulsions can solubilize and preorientate anthracene derivatives with a polar 9-substituent, and thus may enhance the head-to-head cyclomers in the photocyclization of these substrates.