Aim: Platelet-activating factor (PAF) triggers cardiac pre-conditioning against ischemia/reperfusion injury. The actual protection of ischaemic pre-conditioning occurs in the reperfusion phase. Therefore, we studied in this phase the kinases involved in PAF-induced pre-conditioning.
Methods: Langendorff-perfused rat hearts underwent 30 min of ischaemia and 2 h of reperfusion (group 1, control). Before ischaemia, group 2 hearts were perfused for 19 min with PAF (2 x 10(-11) M); groups 3-5 hearts were co-infused during the initial 20 min of reperfusion, with the protein kinase C (PKC) inhibitor chelerythrine (5 x 10(-6) M) or the phosphoinositide 3-kinase (PI3K) inhibitor LY294002 (5 x 10(-5) M) and atractyloside (2 x 10(-5) M), a mitochondrial permeability transition pore (mPTP) opener respectively. Phosphorylation of PKCepsilon, PKB/Akappat, GSK-3beta and ERK1/2 at the beginning of reperfusion was also checked. Left ventricular pressure and infarct size were determined.
Results: PAF pre-treatment reduced infarct size (33 +/- 4% vs. 64 +/- 5% of the area at risk of control hearts) and improved pressure recovery. PAF pre-treatment enhanced the phosphorylation/activation of PKCepsilon, PKB/Akappat and the phosphorylation/inactivation of GSK-3beta at reperfusion. Effects on ERK1/2 phosphorylation were not consistent. Infarct-sparing effect and post-ischaemic functional improvement induced by PAF pre-treatment were abolished by post-ischaemic infusion of either chelerythrine, LY294002 or atractyloside.
Conclusions: The cardioprotective effect exerted by PAF pre-treatment involves activation of PKC and PI3K in post-ischaemic phases and might be mediated by the prevention of mPTP opening in reperfusion via GSK-3beta inactivation.