The success of baculovirus/insect cells system in heterologous protein expression depends on the robustness and efficiency of the production workflow. It is essential that process parameters are controlled and include as little variability as possible. The multiplicity of infection (MOI) is the most critical factor since irreproducible MOIs caused by inaccurate estimation of viral titers hinder batch consistency and process optimization. This lack of accuracy is related to intrinsic characteristics of the method such as the inability to distinguish between infectious and non-infectious baculovirus. In this study, several methods for baculovirus titration were compared. The most critical issues identified were the incubation time and cell concentration at the time of infection. These variables influence strongly the accuracy of titers and must be defined for optimal performance of the titration method. Although the standard errors of the methods varied significantly (7-36%), titers were within the same order of magnitude; thus, viral titers can be considered independent of the method of titration. A cost analysis of the baculovirus titration methods used in this study showed that the alamarblue, real time Q-PCR and plaque assays were the most expensive techniques. The remaining methods cost on average 75% less than the former methods. Based on the cost, time and error analysis undertaken in this study, the end-point dilution assay, microculture tetrazolium assay and flow cytometric assay were found to be the techniques that combine all these three main factors better. Nevertheless, it is always recommended to confirm the accuracy of the titration either by comparison with a well characterized baculovirus reference stock or by titration using two different methods and verification of the variability of results.