The majority of ventricular tachycardias (VTs) occurs in patients with structural heart disease, predominantly coronary heart disease. Implantable cardioverter defibrillators (ICDs) are first-line therapy in patients with VT and structural heart disease. In patients who receive an ICD after a spontaneous sustained VT, recurrent VT episodes or an electrical storm are major problems. In addition, in patients with an ICD implanted for primary prevention of sudden cardiac death, 20% will experience at least one VT episode within 3-5 years after ICD implantation. Catheter ablation has a high acute success rate in eliminating clinical VT. However, several factors make catheter ablation of VT more difficult than ablation of supraventricular tachyarrhythmias. (1) The infarct region is often large. (2) The induced VT can be unstable or hemodynamically only poorly tolerated and therefore "unmappable". (3) Though most commonly located in the subendocardium, the critical VT zone can occasionally be epicardial or intramural in location. (4) In many cases, several reentrant circuits may coexist making ablation of a single form of VT a palliative procedure which does not obviate the risk of sudden death. Thus, catheter ablation of sustained VT in the setting of structural heart disease can only be considered an adjunctive therapy which, in general, will require ICD therapy. Numerous "modern" mapping technologies have been developed, which have increased success rates of catheter ablation of VT in patients with and without structural heart disease. The aim of the present article is to review current three-dimensional mapping systems in comparison to conventional mapping and to describe a reasonable, tailored approach for the individual patient with VT.