Process oscillation characterized by long oscillation period and large oscillation amplitude was observed in continuous ethanol fermentation with Saccharomyces cerevisiae under very high gravity conditions. Metabolic flux analysis was applied to the fermentation system, and the results indicated that carbon flux distributions at the metabolic notes oscillated, correspondingly, and the root reason for the process oscillation was the intracellular metabolism of yeast cells. Cell cycle analysis with the flow cytometry showed that no cell-cycle-dependent synchronization of the daughter and mother cells occurred within the duration of the oscillation, and thus different mechanism existed compared with the oscillation observed in the continuous culture of Saccharomyces cerevisiae and triggered by the synchronization of the daughter and mother cells under specific conditions. Furthermore, the overall metabolic activity of the yeast cells was examined, which was found not exactly out of phase but lag behind ethanol concentration that accumulated within the fermentation system and its inhibition on the yeast cells as well, which supported the mechanistic speculation for the process oscillation: the lag response of yeast cells to ethanol inhibition.