We evaluate the potential of heparin as a substrate component for the fabrication of bone tissue engineering constructs using poly(e-caprolactone)-tricalcium phosphate-collagen type I (PCL-TCP-Col) three-dimensional (3-D) scaffolds. First we explored the ability of porcine bone marrow precursor cells (MPCs) to differentiate down both the adipogenic and osteogenic pathways within 2-D culture systems, with positive results confirmed by Oil-Red-O and Alizarin Red staining, respectively. Secondly, we examined the influence of heparin on the interaction and behaviour of MPCs when seeded onto PCL-TCP-Col 3-D scaffolds, followed by their induction into the osteogenic lineage. Our 3-D findings suggest that cell metabolism and proliferation increased between days 1 and 14, with deposition of extracellular matrix also observed up to 28 days. However, no noticeable difference could be detected in the extent of osteogenesis for PCL-TCP-Col scaffolds groups with the addition of heparin compared to identical control scaffolds without the addition of heparin.