Small molecules bound to unique sites in the target protein binding cleft of calcium-bound S100B as characterized by nuclear magnetic resonance and X-ray crystallography

Biochemistry. 2009 Jul 7;48(26):6202-12. doi: 10.1021/bi9005754.

Abstract

Structural studies are part of a rational drug design program aimed at inhibiting the S100B-p53 interaction and restoring wild-type p53 function in malignant melanoma. To this end, structures of three compounds (SBi132, SBi1279, and SBi523) bound to Ca(2+)-S100B were determined by X-ray crystallography at 2.10 A (R(free) = 0.257), 1.98 A (R(free) = 0.281), and 1.90 A (R(free) = 0.228) resolution, respectively. Upon comparison, SBi132, SBi279, and SBi523 were found to bind in distinct locations and orientations within the hydrophobic target binding pocket of Ca(2+)-S100B with minimal structural changes observed for the protein upon complex formation with each compound. Specifically, SBi132 binds nearby residues in loop 2 (His-42, Phe-43, and Leu-44) and helix 4 (Phe-76, Met-79, Ile-80, Ala-83, Cys-84, Phe-87, and Phe-88), whereas SBi523 interacts with a separate site defined by residues within loop 2 (Ser-41, His-42, Phe-43, Leu-44, Glu-45, and Glu-46) and one residue on helix 4 (Phe-87). The SBi279 binding site on Ca(2+)-S100B overlaps the SBi132 and SBi523 sites and contacts residues in both loop 2 (Ser-41, His-42, Phe-43, Leu-44, and Glu-45) and helix 4 (Ile-80, Ala-83, Cys-84, Phe-87, and Phe-88). NMR data, including saturation transfer difference (STD) and (15)N backbone and (13)C side chain chemical shift perturbations, were consistent with the X-ray crystal structures and demonstrated the relevance of all three small molecule-S100B complexes in solution. The discovery that SBi132, SBi279, and SBi523 bind to proximal sites on Ca(2+)-S100B could be useful for the development of a new class of molecule(s) that interacts with one or more of these binding sites simultaneously, thereby yielding novel tight binding inhibitors specific for blocking protein-protein interactions involving S100B.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Binding Sites
  • Cattle
  • Crystallography, X-Ray
  • Drug Design
  • Humans
  • Hydrogen Bonding
  • Hydrophobic and Hydrophilic Interactions
  • Models, Molecular
  • Molecular Structure
  • Nerve Growth Factors / antagonists & inhibitors*
  • Nerve Growth Factors / chemistry*
  • Nerve Growth Factors / metabolism
  • Nuclear Magnetic Resonance, Biomolecular*
  • Peptide Fragments / chemistry
  • Peptide Fragments / metabolism
  • Protein Binding
  • Protein Conformation
  • Rats
  • Recombinant Proteins / antagonists & inhibitors
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / metabolism
  • S100 Calcium Binding Protein beta Subunit
  • S100 Proteins / antagonists & inhibitors*
  • S100 Proteins / chemistry*
  • S100 Proteins / metabolism
  • Tumor Suppressor Protein p53 / chemistry
  • Tumor Suppressor Protein p53 / metabolism

Substances

  • Nerve Growth Factors
  • Peptide Fragments
  • Recombinant Proteins
  • S100 Calcium Binding Protein beta Subunit
  • S100 Proteins
  • S100B protein, human
  • S100b protein, rat
  • Tumor Suppressor Protein p53

Associated data

  • PDB/3GK1
  • PDB/3GK2
  • PDB/3GK4