It is well known that matrix metalloproteinases (MMPs) act an important role in the invasion, metastasis and angiogenesis of cancer cells. Agents suppressed the MMPs could inhibited the cancer cells migration and invasion. Numerous evidences had shown that curcumin (the active constituent of the dietary spice turmeric) has potential for the prevention and therapy of cancer. Curcumin can inhibit the formation of tumors in animal models of carcinogenesis and act on a variety of molecular targets involved in cancer development. There is however, no available information to address the effects of curcumin on migration and invasion of human lung cancer cells. The anti-tumor invasion and migration effects of lung cancer cells induced by curcumin were examined. Here, we report that curcumin suppressed the migration and invasion of human non-small cell lung cancer cells (A549) in vitro. Our findings suggest that curcumin has anti-metastatic potential by decreasing invasiveness of cancer cells. Moreover, this action was involved in the MEKK3, p-ERK signaling pathways resulting in inhibition of MMP-2 and -9 in human lung cancer A549 cells. Overall, the above data shows that the anticancer effect of curcumin is also exist for the inhibition of migration and invasion in lung cancer cells.