Ca2+-dependent regulation of mitochondrial dynamics by the Miro-Milton complex

Int J Biochem Cell Biol. 2009 Oct;41(10):1972-6. doi: 10.1016/j.biocel.2009.05.013. Epub 2009 May 27.

Abstract

Calcium oscillations control mitochondrial motility along the microtubules and in turn, support on-demand distribution of mitochondria. However, the mechanism mediating the Ca(2+) effect remained a mystery. Recently, several papers reported on the Ca(2+)-dependent regulation of mitochondrial dynamics by a Miro-Milton complex linking mitochondria to kinesin motors. Both mitochondrial motility and fusion-fission dynamics seem to be sensitive to a Ca(2+)-dependent switch by this complex. Evidence is emerging that calcium signaling through Miro-Milton is central to coordination of the local oxidative metabolism with the energy demands and protection against Ca(2+)-induced cell injury.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • Calcium / metabolism*
  • Calcium Signaling / physiology*
  • Humans
  • Mitochondria / metabolism*
  • Mitochondrial Proteins / metabolism*
  • Models, Biological

Substances

  • Mitochondrial Proteins
  • Calcium