Resveratrol has been reported to protect several types of cells against beta-amyloid peptide (Abeta) toxicity by scavenging reactive oxygen species (ROS) and inactivating caspase-3. However, other studies found that long-term treatment with resveratrol inhibited cells by inducing ROS generation and activating caspase-3. In the current report, a 48-h incubation of resveratrol at the concentrations of 5 and 10 microM significantly attenuated the viability of PC12 cells and a 12-h pre-incubation of resveratrol did not protect PC12 cells against Abeta exposure (even further inhibited PC12 cells at the concentrations of 10 microM) by acting as a pro-oxidant. Due to the lipophilicity of resveratrol, resveratrol-loaded polymeric micelles basing on amphiphilic block copolymer were developed. Then, the effects of resveratrol-loaded polymeric micelles on the viability and Abeta protection of PC12 cells were investigated. At the equivalent concentrations of 5 and 10 microM resveratrol, a 48-h incubation of resveratrol-loaded nanoparticles did not show toxicity to cells, while 12-h pre-incubation of resveratrol-loaded nanoparticles protected PC12 cells from Abeta-induced damage in a dose dependent manner (1-10 microM) by attenuating intracellular oxidative stress and caspase-3 activity. Further investigations are absolutely needed to evaluate the feasibility and advantages of in vivo applications of resveratrol-loaded nanoparticles.