Histone deacetylase inhibitors (HDACIs) are a class of antineoplastic agents previously demonstrating preclinical chemosensitizing activity against drug-resistant cancer cells and mouse xenografts. However, whereas clinical studies have shown efficacy against human hematologic malignancies, solid tumor trials have proved disappointing. We previously developed a novel HDACI, "OSU-HDAC42," and herein examine its activity against ovarian cancer cell lines and xenografts. OSU-HDAC42, (i) unlike most HDACIs, elicited a more than five-fold increase in G(2)-phase cells, at 2.5 microM, with G(2) arrest followed by apoptosis; (ii) at 1.0 microM, completely repressed messenger RNA expression of the cell cycle progression gene cdc2; (iii) at low doses (0.25-1.0 microM for 24 hours), induced tumor cell epithelial differentiation, as evidenced by morphology changes and a more than five-fold up-regulation of epithelium-specific cytokeratins; (iv) potently abrogated the growth of numerous ovarian cancer cells, with IC(50) values of 0.5 to 1.0 microM, whereas also remaining eight-fold less toxic (IC(50) of 8.6 microM) to normal ovarian surface epithelial cells; and (v) chemosensitizated platinum-resistant mouse xenografts to cisplatin. Compared with the clinically approved HDACI suberoylanilide hydroxamic acid (vorinostat), 1.0 microM OSU-HDAC42 was more biochemically potent (i.e., enzyme-inhibitory), as suggested by greater gene up-regulation and acetylation of both histone and nonhistone proteins. In p53-dysfunctional cells, however, OSU-HDAC42 was two- to eight-fold less inductive of p53-regulated genes, whereas also having a two-fold higher IC(50) than p53-functional cells, demonstrating some interaction with p53 tumor-suppressive cascades. These findings establish OSU-HDAC42 as a promising therapeutic agent for drug-resistant ovarian cancer and justify its further investigation.