Aims: Nuclear factor-kappaB (NF-kappaB) plays a critical role in cell growth and inflammation during the progression of cardiac hypertrophy and heart failure. Several members of nuclear receptor superfamily, including liver X receptors (LXRalpha and LXRbeta), have been shown to suppress inflammatory responses, but little is known about their effects in cardiomyocytes.
Methods and results: We investigated LXR expression patterns in pressure overload-induced hypertrophic hearts and the hypertrophic growth of the LXRalpha-deficient hearts from mice (C57/B6) in response to pressure overload. The underlying mechanisms were also explored using cultured myocytes. We found that cardiac expression of LXRalpha was upregulated in pressure overload-induced left ventricular hypertrophy in mice. Transverse aorta coarctation-induced left ventricular hypertrophy was exacerbated in LXRalpha-null mice relative to control mice. A synthetic LXR ligand, T1317, suppressed cardiomyocyte hypertrophy in response to angiotensin II and lipopolysaccharide treatments. In addition, LXR activation suppressed NF-kappaB signalling and the expression of associated inflammatory factors. Overexpression of constitutively active LXRalpha and beta in cultured myocytes suppressed NF-kappaB activity.
Conclusion: LXRs are negative regulators of cardiac growth and inflammation via suppressing NF-kappaB signalling in cardiomyocytes. This should provide new insights into novel therapeutic targets for treating cardiac hypertrophy and heart failure.