Although all of the DNA in an eukaryotic cell replicates during the S-phase of cell cycle, there is a significant difference in the actual time in S-phase when a given chromosomal segment replicates. Methods are described here for generation of high-resolution temporal maps of DNA replication in synchronized human cells. This method does not require amplification of DNA before microarray hybridization and so avoids errors introduced during PCR. A major advantage of using this procedure is that it facilitates finer dissection of replication time in S-phase. Also, it helps delineate chromosomal regions that undergo biallelic or asynchronous replication, which otherwise are difficult to detect at a genome-wide scale by existing methods. The continuous TR50 (time of completion of 50% replication) maps of replication across chromosomal segments identify regions that undergo acute transitions in replication timing. These transition zones can play a significant role in identifying insulators that separate chromosomal domains with different chromatin modifications.