Melanocortin-1 receptor (MC1R) and its ligands, alpha-melanocyte stimulating hormone (alphaMSH) and agouti signaling protein (ASIP), regulate switching between eumelanin and pheomelanin synthesis in melanocytes. Here we investigated biological effects and signaling pathways of ASIP. Melan-a non agouti (a/a) mouse melanocytes produce mainly eumelanin, but ASIP combined with phenylthiourea and extra cysteine could induce over 200-fold increases in the pheomelanin to eumelanin ratio, and a tan-yellow color in pelletted cells. Moreover, ASIP-treated cells showed reduced proliferation and a melanoblast-like appearance, seen also in melanocyte lines from yellow (A(y)/a and Mc1r(e)/ Mc1r(e)) mice. However ASIP-YY, a C-terminal fragment of ASIP, induced neither biological nor pigmentary changes. As, like ASIP, ASIP-YY inhibited the cAMP rise induced by alphaMSH analog NDP-MSH, and reduced cAMP level without added MSH, the morphological changes and depigmentation seemed independent of cAMP signaling. Melanocytes genetically null for ASIP mediators attractin or mahogunin (Atrn(mg-3J/mg-3J) or Mgrn1(md-nc/md-nc)) also responded to both ASIP and ASIP-YY in cAMP level, while only ASIP altered their proliferation and (in part) shape. Thus, ASIP-MC1R signaling includes a cAMP-independent pathway through attractin and mahogunin, while the known cAMP-dependent component requires neither attractin nor mahogunin.