A microfluidic device that operates as a set of two adaptive cylindrical lenses focusing light along two orthogonal axes is designed, fabricated and characterized. The device is made out of a silicon elastomer, polydimethylsiloxane, using soft lithography, and consists of a few chambers separated by flexible membranes and filled with liquids of different refractive indices. The cylindrical lenses can be both converging and diverging; their focal lengths are varied independently and continuously adjusted between -40 and 23 mm by setting pressure in the chambers. Applications of the device to shaping of a laser beam, imaging and optical signal processing are demonstrated.