Frequency tunable polarization and intermodal modulation instability in high birefringence holey fiber

Opt Express. 2006 Jan 9;14(1):397-404. doi: 10.1364/opex.14.000397.

Abstract

We present an experimental analysis of polarization and intermodal noise-seeded parametric amplification, in which dispersion is phase matched by group velocity mismatch between either polarization or spatial modes in birefringent holey fiber with elliptical core composed of a triple defect. By injecting quasi-CW intense linearly polarized pump pulses either parallel or at 45 degrees with respect to the fiber polarization axes, we observed the simultaneous generation of polarization or intermodal modulation instability sidebands. Furthermore, by shifting the pump wavelength from 532 to 625 nm, we observed a shift of polarization sidebands from 3 to 8 THz, whereas intermodal sidebands shifted from 33 to 63 THz. These observations are in excellent agreement with the experimental characterization and theoretical estimates of phase and group velocities for the respective fiber modes.