The quasiparticle dynamics of electrons in a magnetically ordered state is investigated by high-resolution angle-resolved photoemission of Ni(110) at 10 K. The self-energy is extracted for high binding energies reaching up to 500 meV, using a Gutzwiller calculation as a reference frame for correlated quasiparticles. Significant deviations exist in the 300 meV range, as identified on magnetic bulk bands for the first time. The discrepancy is strikingly well described by a self-energy model assuming interactions with spin excitations. Implications relating to different electron-electron correlation regimes are discussed.