Aim: Inhibition of the acetyl-CoA carboxylase (ACC) system, consisting of the isozymes ACC1 and ACC2, may be beneficial for treatment of insulin resistance and/or obesity by interfering with de novo lipogenesis and beta-oxidation. We have evaluated effects of pharmacological inhibition of ACC by soraphen (SP) on high fat (HF) diet-induced insulin resistance in mice.
Method: Male C57Bl6/J mice were fed control chow, a HF diet or a HF diet supplemented with SP (50 or 100 mg/kg/day).
Results: Body weight gain and total body fat content of SP-treated animals were significantly reduced compared with HF-fed mice. Fractional synthesis of palmitate was significantly reduced in mice treated with SP, indicative for ACC1 inhibition. Plasma beta-hydroxybutyrate levels were significantly elevated by SP, reflecting simultaneous inhibition of ACC2 activity. Mice treated with SP showed improved peripheral insulin sensitivity, as assessed by hyperinsulinaemic euglycaemic clamps.
Conclusion: Pharmacological inhibition of the ACC system is of potential use for treatment of key components of the metabolic syndrome.