Hirschsprung's disease (HSCR) is a developmental disorder characterized by the absence of ganglion cells in the lower digestive tract. Aganglionosis is attributed to a disorder of the enteric nervous system (ENS) whereby ganglion cells fail to innervate the lower gastrointestinal tract during embryonic development. HSCR is a complex disease that results from the interaction of several genes and manifests with low, sex-dependent penetrance and variability in the length of the aganglionic segment. The genetic complexity observed in HSCR can be conceptually understood in light of the molecular and cellular events that take place during the ENS development. DNA alterations in any of the genes involved in the ENS development may interfere with the colonization process, and represent a primary etiology for HSCR. This review will focus on the genes known to be involved in HSCR pathology, how they interact, and on how technology advances are being employed to uncover the pathological processes underlying this disease.