Characterization of Pb(In(12)Nb(12))O(3)-Pb(Mg(13)Nb(23))O(3)-PbTiO(3) ferroelectric crystal with enhanced phase transition temperatures

J Appl Phys. 2008 Sep 15;104(6):64106. doi: 10.1063/1.2978333. Epub 2008 Sep 19.

Abstract

The full set of material constants for relaxor-based ternary single crystals Pb(In(12)Nb(12))O(3)-Pb(Mg(13)Nb(23))O(3)-PbTiO(3) (PIN-PMN-PT) were determined and compared to binary Pb(Mg(13)Nb(23))O(3)-PbTiO(3) (PMNT) crystals. The Curie temperature for rhombohedral compositions of PIN-PMN-PT was found to be in the range of 160-200 degrees C with ferroelectric rhombohedral to tetragonal phase transition on the order of 120-130 degrees C, more than 30 degrees C higher than that found for PMNT. The piezoelectric coefficients (d(33)) were in the range of 1100-1500 pCN, with electromechanical coupling factors (k(33)) about 89%-92% comparable to PMNT crystals. The coercive field of the ternary crystal was found to be 5.5 kVcm, double the value of the binary counterparts. The dielectric behavior under varying dc bias exhibited a similar trend as observed in PMNT with a much broader usage temperature range. Together with its enhanced field induced phase transition level, the ternary PIN-PMN-PT crystals are promising candidates for high temperature and high drive transducer applications.