Design of monolithically integrated GeSi electro-absorption modulators and photodetectors on a SOI platform

Opt Express. 2007 Jan 22;15(2):623-8. doi: 10.1364/oe.15.000623.

Abstract

We present a design of monolithically integrated GeSi electroabsorption modulators and photodetectors for electronic-photonic integrated circuits on a silicon-on-insulator (SOI) platform. The GeSi electroabsorption modulator is based on the Franz-Keldysh effect, and the GeSi composition is chosen for optimal performance around 1550 nm. The designed modulator device is butt-coupled to Si(core)/SiO(2)(cladding) high index contrast waveguides, and has a predicted 3 dB bandwidth of >50 GHz and an extinction ratio of 10 dB. The same device structure can also be used for a waveguide-coupled photodetector with a predicted responsivity of > 1 A/W and a 3 dB bandwidth of > 35 GHz. Use of the same GeSi composition and device structure allows efficient monolithic process integration of the modulators and the photodetectors on an SOI platform.