In this paper a detailed analysis is made of the phase-sensitive amplification (PSA) of optical pulses by degenerate four-wave mixing (phase-conjugation) in fibers. Formulas are derived, which show that the amplification level and phase sensitivity depend strongly on the phase of the signal pulse, but weakly on its chirp, and the difference between its carrier frequency and the average pump frequency. Solitons, which are unchirped, and dispersion-managed solitons, which are weakly chirped, are suitable for in-line and post-transmission PSA. Pseudo-linear pulses, which are strongly chirped, are unsuitable for in-line PSA, but post-transmission dispersion compensation makes them suitable for PSA prior to detection.