Waveguiding in nanoscale metallic apertures

Opt Express. 2007 Apr 2;15(7):4310-20. doi: 10.1364/oe.15.004310.

Abstract

We study the optical properties of subwavelength metallic waveguides made of nanoscale apertures in a metal. We develop analytical expressions for the fundamental optical modes in apertures. The results are in excellent agreement with finite element calculations. This model provides a physical understanding of the role of non-perfect metallic walls, and of the shape and size of the apertures. They reveal the effect of the skin depth and of the surface plasmon polariton coupling on the waveguide modes. The nanoscopic origin of the increase of the cut-off wavelength due to the electromagnetic penetration depth in the metal is described. Simple expressions and universal curves for the effective index and the cut-off wavelength of the fundamental guided mode of any rectangular metallic waveguide are presented. The results provide an efficient tool for the design of nanoscale waveguides with real metal.