Moritella viscosa is considered the main aetiological agent of 'winter ulcer' disease in farmed salmonid fish. To further understand the pathogenesis of this disease, M. viscosa interaction with fish cells was studied using a Chinook salmon embryo cell line (CHSE-214). As winter ulcer appears exclusively at temperatures below 7-8 degrees C, we attempted to identify if this connection is explained by temperature regulated bacterial virulence. Therefore, infection studies were performed at a temperature range from 4 to 15 degrees C. At all temperatures, M. viscosa caused CHSE cells to retract and round up, lose their attachment abilities and finally disintegrate. The bacterium adhered to CHSE cells and caused changes to the cytoskeleton, however, it did not invade the cells. Increased adherence was demonstrated at 4 degrees C compared to adherence at higher temperatures. Extracellular proteins exerted rapid pore formation and lysis of CHSE cells at a temperature range from 4 to 22 degrees C. Furthermore, only small differences were found comparing extracellular proteomes of M. viscosa from 4 and 15 degrees C. We propose that the pathogenic mechanisms exerted by M. viscosa on CHSE cells are disruption of the cytoskeleton which affects cell rigidity and structure, followed by pore formation and lysis caused by secreted products from the bacterium. These processes can also occur at temperatures above those experienced from winter ulcer outbreaks. However, the adhesion mechanisms appear to be temperature regulated and may contribute to temperature dependent disease outbreaks.