Objective: The purpose of this study was to assess the feasibility and diagnostic value of dual-energy CT iodine mapping at pulmonary CT angiography.
Subjects and methods: Ninety-three patients underwent CT angiography with the dual-energy technique on a dual-source CT scanner. Postprocessing was used to map iodine in the lung parenchyma on the basis of its spectral behavior, and image quality was assessed by two readers. Iodine distribution patterns were rated as homogeneous, patchy, or circumscribed defects. Conventional CT angiographic images reconstructed from the same data sets were reviewed for the presence and localization of pulmonary embolism, whether embolic occlusion was partial or complete, and the presence of changes in the lung parenchyma. Dual-energy perfusion findings were correlated with the CT angiographic and lung-window CT findings in per-patient and per-segment analyses.
Results: Iodine distribution was homogeneous in 49 patients, of whom CT angiography showed no pulmonary embolism in 46 patients and nonocclusive pulmonary emboli in three patients. Images of 29 patients showed a patchy pattern; 24 of these patients had no pulmonary embolism, and five had nonocclusive pulmonary emboli with solely nonocclusive intravascular clots. Images of 15 patients showed segmental or subsegmental defects; four of these patients had evidence of pulmonary embolism, and 11 had occlusive pulmonary emboli with at least one occlusive clot in the pulmonary vasculature.
Conclusion: Dual-energy CT is reliable in the detection of defects in pulmonary parenchymal iodine distribution that correspond to embolic vessel occlusion.