Conventional structural imaging provides limited information on tumor characterization and prognosis. Advances in neurosurgical techniques, radiotherapy planning and novel drug treatments for brain tumors have generated increasing need for reproducible, noninvasive, quantitative imaging biomarkers. This Review considers the role of physiological MRI and PET molecular imaging in understanding metabolic processes associated with tumor growth, blood flow and ultrastructure. We address the utility of various techniques in distinguishing between tumors and non-neoplastic processes, in tumor grading, in defining anatomical relationships between tumor and eloquent brain regions and in determining the biological substrates of treatment response. Much of the evidence is derived from limited case series in individual centers. Despite their 'added value', the effect of these techniques as an adjunct to structural imaging in clinical research and practice remains limited.