Suppression of nonhomologous end joining repair by overexpression of HMGA2

Cancer Res. 2009 Jul 15;69(14):5699-706. doi: 10.1158/0008-5472.CAN-08-4833. Epub 2009 Jun 23.

Abstract

Understanding the molecular details associated with aberrant high mobility group A2 (HMGA2) gene expression is key to establishing the mechanism(s) underlying its oncogenic potential and effect on the development of therapeutic strategies. Here, we report the involvement of HMGA2 in impairing DNA-dependent protein kinase (DNA-PK) during the nonhomologous end joining (NHEJ) process. We showed that HMGA2-expressing cells displayed deficiency in overall and precise DNA end-joining repair and accumulated more endogenous DNA damage. Proper and timely activation of DNA-PK, consisting of Ku70, Ku80, and DNA-PKcs subunits, is essential for the repair of DNA double strand breaks (DSB) generated endogenously or by exposure to genotoxins. In cells overexpressing HMGA2, accumulation of histone 2A variant X phosphorylation at Ser-139 (gamma-H2AX) was associated with hyperphosphorylation of DNA-PKcs at Thr-2609 and Ser-2056 before and after the induction of DSBs. Also, the steady-state complex of Ku and DNA ends was altered by HMGA2. Microirradiation and real-time imaging in living cells revealed that HMGA2 delayed the release of DNA-PKcs from DSB sites, similar to observations found in DNA-PKcs mutants. Moreover, HMGA2 alone was sufficient to induce chromosomal aberrations, a hallmark of deficiency in NHEJ-mediated DNA repair. In summary, a novel role for HMGA2 to interfere with NHEJ processes was uncovered, implicating HMGA2 in the promotion of genome instability and tumorigenesis.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Antigens, Nuclear / genetics
  • Antigens, Nuclear / metabolism
  • Blotting, Western
  • CHO Cells
  • Cell Line
  • Cell Line, Tumor
  • Cricetinae
  • Cricetulus
  • DNA Breaks, Double-Stranded / radiation effects
  • DNA Repair*
  • DNA-Activated Protein Kinase / genetics
  • DNA-Activated Protein Kinase / metabolism*
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism
  • Gene Expression
  • HMGA2 Protein / genetics
  • HMGA2 Protein / metabolism*
  • HeLa Cells
  • Histones / genetics
  • Histones / metabolism
  • Humans
  • Ku Autoantigen
  • Phosphorylation
  • Recombination, Genetic
  • Serine / metabolism
  • Threonine / metabolism
  • Translocation, Genetic / genetics
  • X-Rays

Substances

  • Antigens, Nuclear
  • DNA-Binding Proteins
  • H2AX protein, human
  • HMGA2 Protein
  • Histones
  • Threonine
  • Serine
  • DNA-Activated Protein Kinase
  • Xrcc6 protein, human
  • Ku Autoantigen